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Toward Detection and Attribution of Cyber-Attacks
in IoT-enabled Cyber-physical Systems

Amir Namavar Jahromi, Hadis Karimipour, Senior Member, IEEE, Ali Dehghantanha, Senior Member, IEEE,
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Abstract—Securing Internet of Things (IoT)-enabled cyber-
physical systems (CPS) can be challenging, as security solutions
developed for general information / operational technology (IT
/ OT) systems may not be as effective in a CPS setting. Thus,
this paper presents a two-level ensemble attack detection and
attribution framework designed for CPS, and more specifically
in an industrial control system (ICS). At the first level, a deci-
sion tree combined with a novel ensemble deep representation-
learning model is developed for detecting attacks imbalanced
ICS environments. At the second level, an ensemble deep neural
network is designed for attack attribution. The proposed model
is evaluated using real-world datasets in gas pipeline and water
treatment system. Findings demonstrate that the proposed model
outperforms other competing approaches with similar computa-
tional complexity.

Index Terms—Cyber-attacks, Deep representation learning,
Cyber threat detection, Cyber threat attribution, Industrial
Control System, ICS, Cyber-physical systems, Industrial Internet
of Things (IIoT)

I. INTRODUCTION

Internet of Things (IoT) devices are increasingly integrated
in cyber-physical systems (CPS), including in critical infras-
tructure sectors such as dams and utility plants. In these
settings, [oT devices (also referred to as Industrial IoT or
IIoT) are often part of an Industrial Control System (ICS),
tasked with the reliable operation of the infrastructure. ICS
can be broadly defined to include supervisory control and
data acquisition (SCADA) systems, distributed control systems
(DCS), and systems that comprise programmable logic con-
trollers (PLC) and Modbus protocols.

The connection between ICS or IloT-based systems with
public networks, however, increases their attack surfaces and
risks of being targeted by cyber criminals. One high-profile
example is the Stuxnet campaign, which reportedly targeted
Iranian centrifuges for nuclear enrichment in 2010, causing
severe damage to the equipment [1], [2]. Another example
is that of the incident targeting a pump that resulted in the
failure of an Illinois water plant in 2011 [3]. BlackEnergy3
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was another campaign that targeted Ukraine power grids in
2015, resulting in power outage that affected approximately
230,000 people [4]. In April 2018, there were also reports
of successful cyber-attacks affecting three U.S. gas pipeline
firms, and resulted in the shutdown of electronic customer
communication systems for several days [1]. Although security
solutions developed for information technology (IT) and op-
erational technology (OT) systems are relatively mature, they
may not be directly applicable to ICSs. For example, this could
be the case due to the tight integration between the controlled
physical environment and the cyber systems.

Therefore, system-level security methods are necessary to
analyze physical behaviour and maintain system operation
availability [1]. ICS security goals are prioritized in the order
of availability, integrity, and confidentiality, unlike most IT/OT
systems (generally prioritized in the order of confidentiality,
integrity, and availability) [5]. Due to close coupling between
variables of the feedback control loop and physical processes,
(successful) cyber-attacks on ICS can result in severe and
potentially fatal consequences for the society and our environ-
ment. This reinforces the importance of designing extremely
robust safety and security measurements to detect and prevent
intrusions targeting ICS [1].

Popular attack detection and attribution approaches include
those based on signatures and anomalies. To mitigate the
known limitations in both signature-based and anomaly-based
detection and attribution approaches, there have been attempts
to introduce hybrid-based approaches [6]. Although hybrid-
based approaches are effective at detecting unusual activates,
they are not reliable due to frequent network upgrades, result-
ing in different Intrusion Detection System (IDS) typologies
[7]. Beyond this, conventional attack detection and attribution
techniques mainly rely on network metadata analysis (e.g. IP
addresses, transmission ports, traffic duration, and packet inter-
vals). Therefore, there has been renewed interest in utilizing
attack detection and attribution solutions based on Machine
Learning (ML) or Deep Neural Networks (DNN) in recent
times.

In addition, attack detection approaches can be categorized
into network-based or host-based approaches. Supervised clus-
tering, single-class or multi-class Support Vector Machine
(SVM), fuzzy logic, Artificial Neural Network (ANN), and
DNN are commonly used techniques for attack detection in
network traffic. These techniques analyze real-time traffic data
to detect malicious attacks in a timely manner. However,
attack detection that considers only network and host data
may fail to detect sophisticated attacks or insider attacks.
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Unsupervised models that incorporate process/physical data
can complement a system’s monitoring since they do not
rely on detailed knowledge of the cyber-threats. In general,
a sophisticated attacker with sufficient knowledge and time,
such as a nation state advanced persistent threat actor, can
potentially circumvent robust security solutions. Furthermore,
most of the existing approaches ignore the imbalanced prop-
erty of ICS data by modeling only a system’s normal behavior
and reporting deviations from normal behavior as anomalies.
This is, perhaps, due to limited attack samples in existing
datasets and real-world scenarios. Although using majority
class samples is a good solution to avoid issues due to
imbalanced datasets, the trained model will have no view of
the attack samples’ patterns. In other words, such an approach
fails to detect unseen attacks and suffers from a high false-
positive rate [8]. Thus, there have been attempts to utilize
DL approaches, for example, to facilitate automated feature
(representation) learning to model complex concepts from
simpler ones [9] without depending on human-crafted features
[10].

Motivated by the above observations, this paper presents our
proposed novel two-stage ensemble deep learning-based attack
detection and attack attribution framework for imbalanced ICS
datasets. In the first stage, an ensemble representation learning
model combined with a Decision Tree (DT) is designed
to detect attacks in an imbalanced environment. Once the
attack is detected, several one-vs-all classifiers will ensemble
together to form a larger DNN to classify the attack attributes
with a confidence interval during the second stage. Moreover,
the proposed framework is capable of detecting unseen attack
samples. A summary of our approach in this study is as
follows:

1) We develop a novel two-phase ensemble ICS attack
detection method capable of detecting both previously
seen and unseen attacks. We will also demonstrate
that the proposed method outperforms other competing
approaches in terms of accuracy and f-measure. The
proposed deep representation learning results in this
method being robust to imbalanced data.

2) We propose a novel self-tuning two-phase attack at-
tribution method that ensembles several deep one-vs-
all classifiers using a DNN architecture for reducing
false alarm rates. The proposed method can accurately
attribute attacks with high similarity. This is the first
ML-based attack attribution method in ICS/IIoT at the
time of this research.

3) We analyze the computational complexity of the pro-
posed attack detection and attack attribution framework,
demonstrating that despite its superior performance, its
computational complexity is similar to that of other
DNN-based methods in the literature.

The rest of the paper will be organized as follows. Section II
will introduce the relevant background and related literature.
Section IIT will describe the proposed framework, followed
by the experimental setup in Section IV. In Section V, the
evaluation findings based on two real-world ICS datasets
demonstrate that the proposed framework outperforms several

other systems. Finally, Section VI concludes this paper.

II. RELATED WORK

ML-based attack detection techniques are generally de-
signed to detect moving targets that constantly evolve by
learning new vulnerabilities and not relying on known attack
signatures or normal network patterns [6]. We will now discuss
the related literature as follows.

A. Conventional Machine Learning

In [11], ML algorithms, such as K-Nearest Neighbor
(KNN), Random Forest (RF), DT, Logistic Regression (LR),
ANN, Naive Bayes (NB), and SVM were compared in terms of
their effectiveness in detecting backdoor, command, and SQL
injection attacks in water storage systems. The comparative
summary suggested that the RF algorithm has the best attack
detection, with a recall of 0.9744; the ANN is the fifth-best
algorithm, with a recall of 0.8718; and the LR is the worst-
performing algorithm, with a recall of 0.4744. The authors
also reported that the ANN could not detect 12.82% of the
attacks and considered 0.03% of the normal samples to be
attacks. In addition, LR, SVM, and KNN considered many
attack samples as normal samples, and these ML algorithms
are sensitive to imbalanced data. In other words, they are
not suitable for attack detection in ICS. In [12], the authors
presented a KNN algorithm to detect cyber-attacks on gas
pipelines. To minimize the effect of using an imbalanced
dataset in the algorithm, they performed oversampling on the
dataset to achieve balance. Using the KNN on the balanced
dataset, they reported an accuracy of 97%, a precision of 0.98,
a recall of 0.92, and an f-measure of 0.95. In [13], the authors
presented a Logical Analysis of Data (LAD) method to extract
patterns/rules from the sensor data and use these patterns/rules
to design a two-step anomaly detection system. In the first step,
a system is classified as stable or unstable, and in the second
one, the presence of an attack is determined. They compared
the performance of the proposed LAD method with the DNN,
SVM, and CNN methods. Based on these experiments, the
DNN outperformed the LAD method in the precision metric;
however, the LAD performed better in recall and f-measure.

B. Deep Learning

In [14], the authors used the DNN algorithm to detect
false data injection attacks in power systems. Findings of
their evaluation using two datasets suggested 91.80% accuracy.
In [15], the authors proposed an autoencoder-based method
to detect false data injection attacks and clean them using
denoising autoencoders. Their experiments showed that these
methods outperformed the SVM-based method. To handle the
effect of imbalanced data on the algorithm, they ignored attack
data in training the autoencoder. In [16], the authors presented
a technique based on Extreme Learning Machine (ELM) for
attack detection in CPS. To address the imbalanced challenge
of neural networks, training was conducted using only normal
data. Based on these experiments, the proposed ELM-based
method outperformed the SVM attack detection method.
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Despite promising results in both conventional ML and deep
learning-based techniques, most existing ML algorithms suffer
from the curse of dimensionality due to the large data volume
generated in real-world ICS. Therefore, feature engineering
must reduce the number of features or generate a new rep-
resentation of the features to reduce computational overhead.
Moreover, an imbalanced dataset of the ICS is another chal-
lenge that should be considered. Researchers have attempted
to resolve this issue using oversampling/undersampling, as
well as ignoring attack samples and building algorithms using
normal samples.

Attack attribution seeks to answer the question of “What
kind of attack was it?” and this is generally more challenging
to answer in ICS than in typical IT/OT systems due to the
different network structures, industry-specific protocols, and
so forth [17], [18]. While there have been a small number
of ML-based malware attack attributions [19], [20], designing
robust and effective ML-based attack attribution for ICS and
IIoT systems appears to be understudied. Thus, this paper
proposes a two-stage ensemble deep learning-based attack de-
tection and attack attribution framework for ICS. Our approach
incorporates both process and physical data to solve the im-
balanced data problem without subsampling or oversampling.
The proposed framework utilizes an unsupervised ensemble of
learned representations from normal and attack instances for
attack detection. Next, using an ensemble of several one-vs-all
classifiers trained on each attack attribute, it forms a two-part
DNN to attribute the samples into their corresponding attack
attributes.

III. THE PROPOSED FRAMEWORK

Figure 1 shows the architecture of the proposed framework.
In this framework, the attack detection method detects the
attacks by analyzing the ICS input features using the com-
bination of ensembled unsupervised DNNs and a decision
tree. If an attack is detected, the sample is passed to several
DNNs for detailed analysis. If the attacks were previously
unseen/unknown, the unseen attack detection module would
detect it and label it as an unseen attack. This will be passed on
for detailed security analysis. Otherwise, the attack attribution
method detects the attribute of the attack.

A. Proposed Ensemble Attack Detection Method

The proposed attack detection consists of two phases,
namely representation learning and detection phase. Using
a conventional unsupervised DNN on an imbalanced dataset
yielded a DNN model that mainly learned majority class
patterns and missed minority class characteristics. Most re-
searchers have tried to address this challenge by generating
new samples or removing certain samples to make the dataset
balanced and then passing the data to a DNN. However,
in ICS/IIoT security applications, generating or removing
samples are not reasonable solutions. Due to the ICS/IloT
systems’ sensitivity, generated samples should be validated
in a real network, which is impossible since the generated
attack samples may be harmful to the network and cause

severe impacts on the environment or human life. In addi-
tion, validation of the generated samples is time-consuming.
Moreover, removing the normal data from a dataset is not the
right solution since the number of attack samples in ICS/IIoT
datasets is usually less than 10% of the dataset, and most of
the dataset knowledge is discarded by removing 80% of the
dataset.

To avoid the above mentioned problems in handling imbal-
anced datasets, this study proposed a new deep representation
learning method to make the DNN able to handle imbalanced
datasets without changing, generating, or removing samples.
This model consisted of two unsupervised stacked autoen-
coders, each responsible for finding patterns from one class.
Since each model tries to extract abstract patterns of one
class without considering another, the output of that model
represented its inputs well. The stacked autoencoders had three
decoders and encoders with input and final representation
layers. The encoder layers mapped the input representation
to a higher, 800-dimensional space, a 400-dimensional space,
and the final 16-dimensional space. Equations 1 shows the
encoder function of an autoencoder. The decoder layers did
the opposite and tried to reconstruct the input representation
by starting from the 16-dimensional new representation and
mapping it to the 400-dimensional, 800-dimensional, and input
representations. Equations 2 shows the decoder function of an
autoencoder. These hyperparameters were selected using trial-
and-error to have the best performance in f-measure with the
lowest architectural complexity.

h; = a(wixi + bi) (1

In the above equation, o denotes an activation function, w
is the weight matrix of the encoder, x is a vector of sample
features, b is encoder’s bias, h is the encoded representation,
and i € {Normal, Attack}.

In the above equation, o’ is the decoder’s activation func-
tion, w’ is the weight matrix of the decoder, h is the encoded
representation, b’ is decoder’s bias, % is the reconstruction of
input x, and i € {Normal, Attack}.

Each autoencoder trained individually using the loss func-
tion indicated in Equation 3.

Lz, &) = [Jo = &|* = |lz — o’ (w'(wa + b) + V)[[* (3)

In the above equation, £(x, ) denotes the loss between the
input = and its reconstruction .

After training the autoencoders, all observations were
passed through both autoencoders, and the final representations
were fused to form a super-vector for each instance to build
a new dataset.

Xne'w = [Hnormala Hattuck] (4)

In the above equation, X, is the new dataset consists of a
super-vector of the learned representations from normal and
attack autoencoder models for each sample. The H,,ppmq; 1S a
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Fig. 1. Proposed attack detection and attribution framework

matrix of /., 0rmq; Which is part of the features show how the
sample x can represent a normal sample while the H,tqck 18
a matrix of hg4rqcr Which shows how sample = can represent
an attack sample.

In the second phase, to make a decision based on the
hybrid representation, the super-vector was passed through the
Principal Component Analysis (PCA) algorithm [21], and the
extracted features were given to a DT classifier to facilitate
detection. Using the PCA increases a DT classifier’s speed in
training and testing (see equations 5 and 6). Moreover, DT is
a simple, powerful model that can be trained faster than more
complex models like DNNS, specifically for small feature sets.
In addition, our previous experiments [22] and certain other
studies [11] have shown that DT works well on ICS and CPS
data. Gini function was used to train the DT (see equation 7).

T
Xnew

Xnew = PDP_l )

In the above equation, P is the eigenvector matrix, and D is
a diagonal eigenvalue matrix that the eigenvalues are assigned
to the main diagonal, and other values are considered zero.

The eigenvectors were sorted based on the eigenvalues and
the first £ (number of extracted features) vectors was called
P*. Equation 6 shows the process of extracting k features from
dataset X,,cq-

X* = XnewP* (6)

In the above equation, X* is the result of dimensionality
reduction using PCA.

gini=1->p? (7)

In the above equation, c is the number of classes, and p; is
the probability of the class ¢ in the current branch of the tree.
To detect previously unseen attacks, a One-Class SVM
(OCSVM) was used to make a boundary around normal
samples and to report the others as previously unseen attacks.
Algorithm 1 shows the algorithm of the proposed attack
detection component.
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Algorithm 1: The proposed two-phase attack detection
component

Data: Dataset including Normal and Attack samples
(X) and their labels(y = {0,1})

Training Phase:

X =2X): z= (@)

Xattack = X[y == 1]9

Xnormal = X[y == 0]’

f Training Representation Learning Models:

for number of epochs do

for number of batches in Normal set do

Train the Normal autoencoder (AEyormat):
min £(X7Lormala Xnormal );

x — min(x)

— min(x)’

end

for number of batches in Attack set do
Train the Attack autoencoder (AE,¢tqck):

min £ (Xattack ) Xattack ) 5

end
end
f Fusion Layer:
newRepnormal = AEnor'rrzul-prediCt(X);
newRepattak = AEattack ~p7"6di0t(X);
XsuperVector =
concat(newReppormat, neWRePattack)s
i Detection Model:
Feature selection using PCA:
Selected_Features(Xsupervector) =
PCA(XsuperVector);
Train a DT using the new features:
DT = Train_DT(Selected_Features)
Testing Phase:

Ttest = Z(ztext);

newRepnormal = AEnormal(xtest);
newRepattack = AEattack (xtest);
superVector =

concat(newRepyormat, newRepattack )
Zrest = Selected_Features(superVector);
:') = DT(jtest);
Output: Normal/Attack Label (7))
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B. Proposed Self-Tuning Attack Attribution Method

The proposed self-tuning attack attribution method consists
of two phases. In the first phase, a one-vs-all classifier is
trained for each attribute. To train these classifiers, a dataset’s
attack samples are split into several subsets based on their
attributes, and one DNN model is trained for every set. The
Rectified Linear Unit (ReLU) function is used as an activation
function for the hidden layers, and the Sigmoid function is
used as the output-layer activation function. Next, the outputs
of all of the first phase DNNs are passed to the second phase
to attribute the instances based on one-vs-all DNNs.

In the second phase, the one-vs-all classifiers and a DNN
ensemble model are combined to compose a more complex
DNN. This DNN is constructed from two components: a
partially-connected element consisting of several one-vs-all
classifiers and a fully-connected element fusing the first part’s
results and attributes of the samples into different classes .
The ReLU activation function is used for the hidden layers
of the ensemble DNN, and the softmax function is used as
its output activation function (equation 8). The Categorical
Cross-Entropy (CE) is performed as the loss function of the
final DNN (equation 9). In addition, the outputs of this DNN
are the two most probable attributions for the given sample.
This model is called the primary attack attribution method. A
DT classifier is trained for each pair of attack attributes used
for the final attack attribution from the two candidates, and
this is referred to as the secondary attack attribution method.

e’
o(s); = —0— )
(s) S o
where K is the number of classes, and z = (z1, ..., z) € RE.
K
CE=—Y_ yilog(o(s):) )
i=1

where y; is the label of the ¢ — th class, and log(o(s);) is the
output of the softmax function.

This method is self-tuning since it can tune itself by
changing the attack patterns without needing pre-processing.
This results from using the gradient descent technique to
simultaneously update the weights of all one-vs-all classifiers
and the ensemble model. This feature is useful when a new
attack attribute is discovered, and then it is added to the
attack attribution method . This work is done by passing the
new dataset, including the new attack attribute, through the
proposed attack attribution method. Algorithm 2 shows the
algorithm od the proposed attack attribution component.

Algorithm 2: The proposed two-phase attack attribu-
tion component

Data: Dataset including Artack samples from various
families (X) and the labels (y € [1,c])
Training Phase:

X =2(X): z= z — min(z)

maz(z) — min(z)’
foreach artack type i do
foreach sampe r € X do

if y[z] =i then

| yi=1
end
else
| =0
end
end
end

g Training the binary DTs:
foreach rwo class of attacks do
| Train a DT

end
g Training one-vs-all classifiers:
foreach arttack type i do

for number of epochs do

for number of batches in the Attack type i do
Train the one-vs-all classifier (classifier;):
min £(y;, i );
end

end
end
# Ensemble model:
DNN = new neural network;
foreach classifier i do

| DN N.add(classi fier;);

end
DN N.add(fully — connected neural network);
for number of epochs do

for number of batches in training data do

‘ train the whole network: min £(y, §);

end
end
Testing Phase:
Ttest = Z(xtest);
DN N.predict2bests(Tiest);
Pass x5 to the DT;
Output: Attack type ()

Naive Malicious Response Injection (NMRI), Complex Mali-
cious Response Injection (CMRI), Malicious State Command
Injection (MSCI), Malicious Parameter Command Injection
(MPCI), Malicious Function Code Injection (MFCI), Denial
of Service (DoS), and Reconnaissance (Recon) attacks. It
reportedly contained 274,628 observations, in which 214,580
(78.14%) were normal samples, and the remaining 60,048
(21.86%) samples were attack samples. This dataset also
consisted of 17 features of network and field states.

The second dataset was the Secure Water Treatment (SWaT)

IV. EXPERIMENTAL SETUP
A. Dataset

As previously discussed, we evaluated the proposed frame-
work using two real-world ICS datasets. The first dataset
was collected at the Mississippi State University [23] from
a gas pipeline system consisting of sensors and actuators, a
communication network, and supervisory control. This dataset
consists of normal samples and seven attack types, including
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dataset [24], collected at Singapore University of Technology
from a water treatment system, consisting of 449,920 samples.
In this dataset, 87.9% and 12.1% were normal and attack
samples, respectively. Each dataset sample was formed by 51
features that were the physical measurements of the systems.
In addition, this dataset consisted of 31 different attack sce-
narios that could be used for attack attribution.

B. Pre-Processing

As shown in Figure 1, the proposed framework consists of
several DNNs that accept the raw features as input and map
them to new representations for attack detection and attack
attribution. Similar to some other approaches [25], [26], [27],
the data was normalized using the min-max technique before
passing it through the methods to make them unbiased against
the features. This was the only pre-processing for the proposed
framework. Moreover, 10-fold cross-validation was performed
to obtain the results.

C. Evaluation Metrics

To ensure fairness in comparison, this study evaluated the
performance of the proposed attack attribution method using
the DT classifier on the original representation and approaches
that used the same dataset(s) in their original articles. However,
for the proposed self-tuning attack attribution method, we were
not able to find similar approaches. A comparison with the
Fuzzy C-Mean (FCM) clustering [25] verified that FCM could
detect only four out of eight classes in the gas pipeline dataset
(while our model attributes all eight classes). This suggested
that the attacks were very similar and hard to classify .

Similar to other approaches, this study used standard metrics
to evaluate the performance of machine learning algorithms.
Specifically, it used True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) to represent the
number of samples correctly classified as attacks, correctly
classified as normal, wrongly classified as attacks, and wrongly
classified as normal, respectively. Using these metrics, it is
possible to define Accuracy (ACC), Precision (Pre), Recall
(Rec), F-measure, Receiver Operating Characteristics (ROC)
curve, and Area Under Curve (AUC) to quantify the perfor-
mance of ML algorithms in performing malware detection.

TP+ TN
AcC = TP+TN1FP+FN (10
Pre = TPi—iPFP (11
Rec= gt (12)
f — measure = % (13)

o Accuracy indicates the number of samples that are cor-
rectly classified over the entire dataset. Since ICS datasets
are imbalanced, this metric is not a good one for evalu-
ation (see Equation 10).

o Precision indicates the number of samples that are de-
tected correctly as attack over total samples detected as
an attack (see Equation 11).

o Recall indicates the number of samples that are detected
as attack correctly over the total samples of the attack in
the dataset (see Equation 12).

o F-measure is the harmonic value of precision and recall
(see Equation 13).

In the detection task, the desired class is the attack one. The
attack class is considered as the positive class for precision,
recall, and f-measure metrics.

D. Feature Extraction

PCA was chosen for dimensionality reduction and also to
extract the best features from super-vectors. It also improve
the performance of the DT classifier by extracting independent
features in an unsupervised manner.

To extract the best features using the PCA, 10-fold cross-
validation was performed on each dataset’s possible number
of features. The dataset’s principal components were extracted
in each run, and the model was trained and tested using the
principal components. To make the PCA unbiased to the test
data, training was performed on the training data . The number
of principal components with the best f-measure over ten runs
was then selected as the number of PCA components.

V. DISCUSSIONS

The proposed attack detection and attack attribution meth-
ods form a framework that can keep ICS/IIoT systems secure.
This framework is proposed to address the challenge of
ICS imbalanced data without ignoring the minority class or
balancing the dataset. The proposed framework should be
deployed on the physical layer to passively monitor the sensor
data and give an alert when an attack happens. In such a case,
the data is sent to the attribution model to detect the attack
attribute. Finally, security experts and incident response teams
can handle attacks and prevent potential damages using the
proposed framework’s efficient, accurate information.

A. The Proposed Attack Detection Method

The proposed attack detection method consists of a deep
representation learning model with two unsupervised stacked
autoencoders, feature extraction using the PCA, and a DT
classification.

Due to the consideration of both attack and normal data
in the training step, the proposed attack detection method
can detect previously seen attacks with better f-measures than
the other methods, as can be seen in Table I. To enhance
the method’s ability to face the previously unseen attacks, an
anomaly detection module was added to the system trained on
the normal data to capture the normal data structure and detect
anomalies. The OCSVM model was used in this module.

The proposed attack detection component is scalable to
larger ICS with more features and larger data sets. The only
part of the system that depends on the ICS architecture is the
representation-learning step, which needs more training time
by increasing the size of the system and/or the data’s size.
However, it will not affect the performance of the proposed
framework in real implementation.
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1) General Performance: As observed in Table I, the
proposed method outperformed the base DT model on the
original representation in all metrics. Moreover, it outper-
formed other techniques in the f-measure metric (i.e. the
harmony between precision and recall and an important metric
to evaluate imbalanced datasets). In addition, the proposed
attack detection method outperformed all other techniques
on the SWaT dataset. In other words, the proposed attack
detection method achieved good precision without affecting
the recall metric on the data. As discussed earlier, accuracy is
not a useful metric by which to evaluate models’ performances
using imbalanced datasets; in this case, by labeling all of the
samples with the majority class label, the model achieved high
accuracy (78.14% in gas and 87.9% in the SWaT dataset).

Moreover, as shown in Table II, the proposed attack de-
tection method has a higher recall (true-positive rate) than
other techniques for each attack attribute. In other words, the
proposed method detects more attacks than the others when
trained on only one attack type.

Table I reinforces the importance of the representation learn-
ing models to ICS datasets. The proposed deep representation
learning step enables the method to develop new features
separately for normal and attack data in an unsupervised
manner based on their patterns. In turn, these new features
allow the DT to perform a more effective classification than
was facilitated using the original features.

2) Imbalanced Testing: The reported higher f-measure in
Table I shows that the proposed attack detection method
achieved better performance on the imbalanced datasets. To
evaluate the robustness of the proposed ensemble two-phase
attack detection method for imbalanced ICS data, this study
generated different sets of data with different imbalance ratios
by varying the number of attack samples in the original
dataset. These sets were obtained from the original datasets
and generated randomly. Next, the new datasets were fed
into the proposed attack detection method and compared with
several base classifiers, including DT, Logistic Regression
(LR), Gradient Boosting (GB), AdaBoost M1 (AB), and
Random Forest (RF). The new imbalanced sets were used
for training to ensure a fair comparison, and the evaluation
was performed using a predefined test set. In addition to
achieving better performance for the proposed attack detection
method in all metrics, the proposed model resulted in a
robust, consistent performance in all metrics for both datasets
(see Figure 2). Robustness refers to the low variance of the
changes in the performance of the model. It indicates that the
proposed attack detection method achieves high accuracy, low
false positives, and high f-measures simultaneously, thereby
outperforming the competing approaches. More specifically,
the high f-measure of the proposed method is significant in
performance evaluation for imbalanced datasets.

Beyond this, the findings suggested that the proposed
method mitigates the challenge of the imbalanced problem
in DNNs by separating the attack and normal samples and
running separate, unsupervised stacked autoencoders on each
of them. Using this technique, major class samples’ effects on
the gradient descent algorithm are avoided/omitted, enabling
the autoencoders to extract more useful features from the

minority set. Furthermore, the fusion layer consists of useful
representations from both majority (normal) and minority
(attack) data.

3) Previously Unseen Attack Detection: To detect previ-
ously unseen attacks, the OCSVM model was added to the
proposed framework. OCSVM, a type of SVM, attempts
to maximize the decision boundary’s margin to yield better
generalization. Based on the evaluations, we observed that
this method correctly detected 86.14% of previously unseen
attacks in the gas pipeline dataset. Moreover, 94.53% of the
previously unseen attacks were detected correctly in the SWaT
dataset.

4) Execution Time Comparison: Table III compares the
proposed attack detection component’s execution time with
other proposed methods in the literature. As illustrated in
Table III, it takes 1200 seconds to train the whole model
on the SWaT dataset, while applying the trained model over
testing samples takes 2.98 seconds, which means around 0.03
milliseconds for each sample. Moreover, training the proposed
method on the Gas Pipeline dataset takes 1115 seconds, while
the test takes around 1.1 seconds, which means around 0.02
milliseconds for each sample. As can be seen from Table III,
the proposed model is faster than most DNN-based techniques
due to its simpler architecture combined with the PCA method,
which makes the DT faster. Besides, the proposed attack
detection component’s execution time illustrates that it can
detect attack samples in almost real-time (0.02 milliseconds for
the Gas Pipeline dataset and 0.03 milliseconds for the SWaT
dataset).

B. The Proposed Attack Attribution Method

In the proposed attack attribution method, a one-vs-all DNN
classifier was responsible for extracting each attribute’s pattern
and assigned belonging confidence to each observation. These
confidences from all DNNs were passed to another DNN,
which was responsible for attack attribution. Due to the close
patterns of the attacks [25], this DNN was not performed well.
However, it can detect attributes better than FCM. To improve
the attack attribution method performance, this study defined
a two-step method. In the first step, the aforementioned DNN
determined the two best attribute candidates for the observed
sample. In the second step, the observed sample was sent to a
DT pre-trained on the samples of two candidate attributes to
detect the best attribute.

Using one-vs-all classifiers for each attack attribute guaran-
tees that each classifier passes the best result to the ensemble
DNN model that yields better performance, as this paper
will show here. These classifiers were connected to a DNN
fusion model to pass their extracted features and fuse them
into the fusion model to attribute the samples. Each one-vs-
all classifier was a supervised DNN that encoded the input
features within an 8-dimensional space and then into a 128-
dimensional space using the ReLU activation function. Based
on the final representation, the output layer classified it. The
fusion model is another DNN; its inputs were the outputs
of the one-vs-all classifiers. This fusion model decoded the
input features in the 128-dimensional space, followed by a
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TABLE I

COMPARISON OF THE PROPOSED ATTACK DETECTION METHOD WITH OTHER TECHNIQUES ON THE GAS PIPELINE AND SWAT DATASETS

SWaT Dataset

I

Pipeline Dataset

Method Pre Rec f-measure Method ACC Pre Rec f-measure
Proposed method | 0.9999  0.9999 0.9998 Proposed method | 96.20 0.9617  0.9620 0.9618
DT 0.8411 0.8284 0.8346 DT 91.11  0.9092 09111 0.9099
LAD-ADS [13] 0.936 0.891 0.914 SVM [28] 92.50  0.782 0.936 0.852
DNN [26] 0.9829  0.6785 0.8028 K-means [25] 56.80 0.8319 0.5728 0.6751
1D CNN [29] 0.868 0.854 0.861 NB [25] 90.36  0.8195 0.7692 0.8595
MADGAN [30] 0.9897 0.6374 0.77 ANIKNN [12] 97 0.98 0.92 0.95
Tabor [31] 0.8617  0.7880 0.8232 LSTM [32] 92 0.94 0.78 0.85
LSTM ([33] 0.951 0.627 0.756
ST-ED [33] 0.949 0.705 0.809
TABLE II

COMPARISON BETWEEN THE RECALL OF THE PROPOSED ATTACK DETECTION METHOD AND OTHER TECHNIQUES ON THE GAS PIPELINE DATASET

ATTACK ATTRIBUTES

Model “ NMRI “ CMRI “ MSCI “ MPCI “ MFCI “ DoS “ Recon.
Proposed attack detection method 0.97 0.95 0.97 0.95 1 1 1
AIIKNN [12] 0.93 0.76 0.68 0.85 1 0.98 1
LSTM [32] 0.88 0.67 0.62 0.80 1 0.94 1
K-means [25] 0.19 0.20 0.73 0.66 0.52 0.56 0.75
NB [25] 0.81 0.84 0.73 0.67 0.52 0.79 0.50
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Fig. 2. Comparison of accuracy , AUC, and f-measure of the proposed attack detection method and other basic classifiers on original representation for
different attack IR (A), (B), and (C) on the gas pipeline dataset and (D), (E), and (F) on the SWaT dataset. In the figures, PM is the proposed attack detection
method, DT is the Decision Tree, LR is the Logistic Regression, GB is the Gradient Boosting, AB is the AdaBoost M1, and RF is the Random Forest.

64-dimensional space using the ReLLU activation function. The
output layer used the softmax activation function to attribute
the observation to the given attributes (31 for the SWaT dataset
and seven for the gas pipeline dataset).

As discussed in [25], running the FCM algorithm on the
gas pipeline dataset with the eight clusters resulted in four
clusters. This implies that the attacks are very similar and
share many common features that the FCM algorithm consid-
ers them one group. To overcome this problem, this study
detected the two most probable attack attributes for each
sample using the ensemble model. These samples were fed
into the DT classifier, which was trained on the two most
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probable attributes to obtain the final attack attribute. This was
labelled the secondary attack attribution method. As observed
in Table IV, all of the metrics improved significantly by using
the final DT model (secondary attack attribution) compared
with the primary attack attribution method (using the output
of DNN model) on both datasets. Thus, the attack attribution
method can attribute all attacks with reasonable confidence (as
a best or second-best result). Figure 3 compares the confusion
matrices for the performance of the proposed primary and
secondary attack attribution methods for the gas pipeline
dataset. The confusion matrix for the SWaT dataset is not
reported due to page limitations since it includes 36 different
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TABLE III
COMPARISON OF THE TRAIN AND TEST EXECUTION TIME OF THE PROPOSED ATTACK DETECTION METHOD WITH OTHER TECHNIQUES ON THE GAS
PIPELINE AND SWAT DATASETS. IN THIS TABLE, S STANDS FOR SECONDS AND W STANDS FOR WEEKS.

SWaT Dataset I Pipeline Dataset

Method Train Test Method Train Test
Proposed method 1200s 2.98s Proposed method | 1115s  1.10s
LAD-ADS [13] 8820s 2s SVM [28] 11712 -

DNN [26] 2w 28800s ANIKNN [12] - 5.99s
Tabor [31] 214s 33s LSTM [32] 2100s  1.65s
LSTM [33] 57s (per epoch) 13s
ST-ED [33] 692s 217.50s

attack attributes. Despite the strong evaluation results of the
secondary attack attribution method, it cannot discriminate
between DoS and MPCI samples due to the similar impacts
of these attacks on its features.

The proposed attack attribution component is scalable to
larger ICS with more features and larger data sets. However,
its execution time depends on the number of attack classes
and almost independent of the system’s size (features).

1) Execution Time: Training of the proposed attack attribu-
tion component on the Gas Pipeline dataset took 1155 seconds,
while the attribution over test data took 0.65 seconds, which
means around 0.05 milliseconds for each sample. Moreover,
training of the proposed attack attribution component on the
SWaT dataset took 3452 seconds, and it classified the test
data in 2.87 seconds, which means around 0.27 milliseconds
for each sample. The proposed model’s training and testing
execution time depend on the number of attribute classes
(seven classes for the Gas Pipeline dataset vs. 31 classes for
the SWaT dataset).

C. Computational Complexity

In this section, the computational complexity of the pro-
posed attack detection and attribution methods will be ana-
lyzed.

The computational complexities of training and testing the
used algorithms are shown in Table V [34], [35]. In this table,
n is the number of training samples, and the computational
complexities were calculated for the worst-case scenario, in
which the number of input features, number of neurons in
each layer, number of selected support vectors, and depth of
the DT is considered to be n.

1) The Proposed Attack Detection Method: As mentioned
before, the proposed attack detection method consists of a
novel form of deep representation learning, PCA feature
extraction, and a DT classification. Each deep representation
learning model has three encoding and three decoding layers.

Based on Table V, the computational complexity of training
the proposed deep representation learning in the worst-case
scenario is O(n*), where n is the number of training samples.

The other parts of this method are the PCA and DT algo-
rithms. As mentioned in Table V, in the worst-case scenario,
the PCA and DT algorithms’ computational complexity is
equal to O(n?). Equation 14 shows the computational com-
plexity of training of the proposed attack detection method.

O(n*) + O(n®) + 0(n®) = O(n*) (14)

which is similar to the other DNN-based detection methods in
the literature.
Moreover, the testing computational complexity of the pro-
posed attack detection method is shown in Equation 15.
O(n?) + O(n) + O(1) = O(n?) (15)
which is similar to all other DNN-based methods (except the
recurrent neural network-based methods) in the literature.
Adding the previously unseen module did not change the
computational complexity of training and testing the pro-
posed attack detection technique since the OCSVM’s training
computational complexity is O(n?). In addition, its testing
computational complexity is O(n?), which cannot affect the
proposed attack detection method’s computational complexity.

2) The Proposed Attack Attribution Method: The proposed
attack attribution method includes several one-vs-all DNNs
connected using another DNN to make a deeper DNN model.
The best two attribution candidates were selected using this
DNN model, and a pre-trained DT on the candidate attributes
was used to detect the final attributes. As a DT should
be trained for every two attributes, % DTs should be
trained; where ¢ is the number of attributes, each has a
computational complexity of O(n?). Thus, the computational
complexity of training all of the DTs is O(c? x n?), where ¢
is the number of attributes, and n is the number of training
samples.

In addition to the DTs, the proposed attack attribution
method used DNNs with the training computational complex-
ity of O(n*). Combining the DTs’ and the DNN model’s train-
ing, the computational complexity of training the proposed
attack attribution model is shown in Equation 16.

O(c* x n®) + O(n*) = O(n*) (16)
where ¢ is the number of attributes, and n is the number
of training samples. Since the number of training samples is
significantly larger than the number of attributes, the number
of attributes is ignored in the computational complexity anal-
ysis. As seen in Equation 16, the computational complexity
of training the proposed attack attribution method is similar to
that of the other DNN methods.

The proposed attack attribution’s testing computational
complexity is O(n?), similar to the computational complexi-
ties of the other DNN-based techniques in the literature.
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TABLE IV
RESULTS OF THE PROPOSED SELF-TUNING TWO-PHASE ATTACK ATTRIBUTION METHOD ON BOTH GAS PIPELINE AND SWAT DATASETS
Model Accuracy Precision Recall f-measure
Gas ][ SWaT Gas ][ SWaT Gas ][ SWaT Gas [ SWaT
Proposed primary attack attribution method 78.08 99.53 0.7906 || 0.9959 0.7808 0.9953 0.7857 0.9956
Proposed secondary attack attribution method || 98.14 99.71 0.9822 || 0.9974 || 0.9814 || 0.9971 0.9818 0.9972
Confusion Matrix Confusion Matrix
4000 4000
z- 231 1320 0 0 o 0 o z1 0 0 0 0 0 [}
E B
= - 120 o 0 0 o ] 3200 - 0 0 0 a 0 0 3200
8 3
§ E - 0 0 788 789 0 3 '] 2400 § E— 0 0 3 0 0 0 2200
S g- © 0 41 0 2 o 5 - O 0 2 0 1 0
s ; -0 0 [} 0 980 0 1] [ 1600 s ; - 0 0 0 0 980 o 1] [- 1600
£ H
.3 - 0 0 12 219 o 204 o - 800 .g - 0 o 7 210 a 218 o - 800
o o
c- 0 0 o 0 27 0 748 g- 0 0 0 0 0 o 775
e S
& &

NMRI CMRI MSCI MPCI MFCI DoS Recon

Predicted labels

(A)

NMRI  CMR| MSCI MPCI MFCI  DoS Recon

Predicted labels

(B)

Fig. 3. Confusion matrices of the proposed attack attribution method on the gas pipeline dataset for (A) the proposed primary attack attribution method and

(B) the proposed secondary attack attribution method

TABLE V
COMPUTATIONAL COMPLEXITY OF THE USED ALGORITHMS

Algorithm [[ Training || Testing

DT O(n?3) O(n)
PCA O(n?) o(1)
OCSVM O(n3) O(n?)
DNN O(n?%) O(n?)

D. Implementation in Real-World Environment

The proposed framework can be implemented in the same
network layer as the Human Machine Interface (HMI) to ob-
serve the sensor data from field devices and detect and attribute
attacks. It also can be connected to the monitoring system in
control center to inform the security experts about the presence
of the attack and help them choose preventive actions in a
timely manner. Moreover, the provided information helps the
incident response team understand the attack and its impacts,
based on the attribution information, to revive the damaged
assets

As shown in Figure 4, at first the input sensor data are
fed into the detection component. The detection components
classify it as normal or attack based on its previous experience
(training data). If the entered sample is detected as normal,
it will pass to an OCSVM module for further investigation
by comparing it to normal samples’ profiles. However, if the
detection component detects the sample as an attack, it will
go to the attribution component to extract its attribution. All
the outputs are then passed to a monitoring system.

VI. CONCLUSION

This paper proposed a novel two-stage ensemble deep
learning-based attack detection and attack attribution frame-
work for imbalanced ICS data. The attack detection stage
uses deep representation learning to map the samples to the
new higher dimensional space and applies a DT to detect the
attack samples. This stage is robust to imbalanced datasets

and capable of detecting previously unseen attacks. The attack
attribution stage is an ensemble of several one-vs-all classi-
fiers, each trained on a specific attack attribute. The entire
model forms a complex DNN with a partially connected and
fully connected component that can accurately attribute cyber-
attacks, as demonstrated. Despite the complex architecture of
the proposed framework, the computational complexity of the
training and testing phases are respectively O(n*) and O(n?),
(n is the number of training samples), which are similar
to those of other DNN-based techniques in the literature.
Moreover, the proposed framework can detect and attribute
the samples timely with a better recall and f-measure than
previous works.

Future extension includes the design of a cyber-threat hunt-
ing component to facilitate the identification of anomalies
invisible to the detection component for example by building
a normal profile over the entire system and the assets.
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